

DESCRIPTION

The PPS35 is an amplified digitally compensated pressure sensor in a compact 6-pin package. This state of the art MEMS based pressure sensor was designed for applications where size and cost are important but where the media is harsh.

The PPS35 series utilizes MEMS piezo-resistive sensors and a 14-bit sigma delta ADC ASIC. It provides pressure of the media with a response time down to 5 ms. Isolation from the media with a SS cap enables long term stability of the sensor in various liquid media.

Please contact the factory for Custom design availability.

• Back Side Die for Harsh Environment

- Temperature Measurement
- -40°C 105°C Operating Temperature
- Compact Size 6 Pin DIP
- ± 0.5% Linearity FS
- Analog 14 Bit Digital Output SPI/I2C
- Pressure Range: 5-300 PSI
- Resolution: .1 %
- Accuracy: \pm .5 % (+.75% with DO) (includes-Hysteresis, NL, TC)

APPLICATIONS

- Weather Station
- Small Water Pumps
- Sports Watches
- Aviation
- Industrial Applications

Maximum Environmental Ratings

 Application Examples

Package

The PPS35 is housed in an 6 PIN Nylon package. The Nylon cover allows for .120" tubing to seal the sensor.

Stability

The silicon MEMS pressure sensor has a SiO2 base and is mounted to a nylon base with RTV and is sealed with a plastic cover. The special die attach material helps reduce the mechanical stress which results in greater stability over time and temperature.

Additional stability is gained from factory stabilization of all sensors.

Media

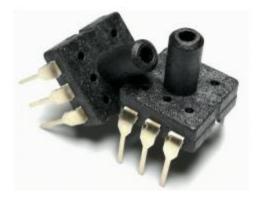
The pressure port is tolerant to most media including but not limited to air, gas, and most non-corrosive media.

Wetted parts

The wetted surfaces are SiO2, Nylon, and Pyrex.

Pressure port

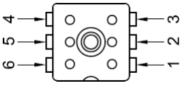
The PPS35 has a long cylindrical port with an engineered RTV to protect against water ingress.


Dive Watch

Satellite Balloon

Skydiving

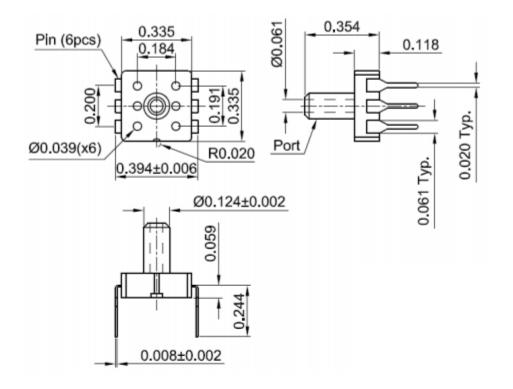
PPS35 Operational Characteristics

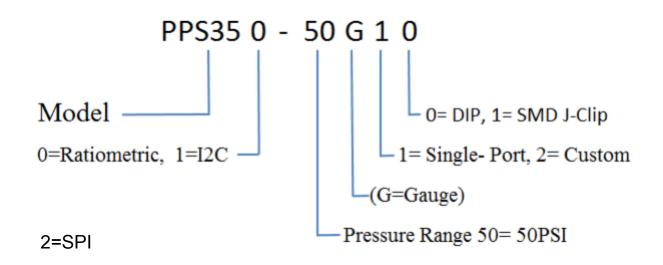

 $V_{+} = 5V, V_{-} = 0V, Temperature = 25^{\circ}C$

$v_+ = 5v$, $v = 0v$, reinperature =	25 0								
PARAMETER	SYMBOL	Min	Тур	Max	UNITS				
Supply Voltage	Vdd	4.5	5	5.5	V				
Operating Temperature	Ts	-40		105	٥C				
Supply Current (Note 1)	I _{DD}	2	3	5	mA				
Analog Output	v	.5		4.5	V				
Digital Output			I2C/SPI		Counts				
Accuracy									
Total Error Band		-1.5		1.5	%Full Scan				
Non-Linearity (Note 2)		-0.5		0.5	%Full Scan				
Temperature Error		-1		1	PPM/ºC				
Response Time	t _R	4	5	10	ms				
		Anal	og-to-Digital	1					
Resolution			14 Bit		Full Scale				
Temperature Resolution			0.1		°C				
	•	I2C &	SPI Interface		1				
Input Low Level	Vin_low	0		.2	Vdd%				
Input High Level	Vin_high	.8		1	Vdd%				
Output Low Level	Vo_low			.1	Vdd%				
Capacitor (Vdd – GND)	CL			4.7	uF				
Pull-Up Resistor	Ri2C_PU	1K			Ω				

Notes: 1) Measured at zero pressure. 2) Defined as best straight line 3) Measured from 0-50C. +-.75% with Digital Output option.

Electrical Pin Configuration


Output	Pin1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
I2C*	GND	INT/SS	VDD	SCL	SDA	TEST
Ratio**	GND	TEST	GND	VDD	SO	VDD


Top View

* 1. Pin 6 is for test purpose only. Do not connect to any circuit.
** 1. Pin 2 is for test purpose only. Do not connect to any circuit.
2. All GNDs internal connected. All VDDs internal connected.

Surface Mount DIP Package

Part Number Configuration

Ph: (480) 462-1810 sales@PhoenixSensors.com

Notice:

Phoenix Sensors LLC reserves the right to make changes to the product contained in this publication. Phoenix Sensors LLC assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. While the information in this publication has been checked, no responsibility, however, is assumed for inaccuracies.

Phoenix Sensors LLC does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of a life-support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.